首页> 外文OA文献 >Reducing Tile Complexity for the Self-Assembly of Scaled Shapes Through Temperature Programming
【2h】

Reducing Tile Complexity for the Self-Assembly of Scaled Shapes Through Temperature Programming

机译:降低鳞片形状自组装的瓷砖复杂度   温度编程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper concerns the self-assembly of scaled-up versions of arbitraryfinite shapes. We work in the multiple temperature model that was introduced byAggarwal, Cheng, Goldwasser, Kao, and Schweller (Complexities for GeneralizedModels of Self-Assembly, SODA 2004). The multiple temperature model is anatural generalization of Winfree's abstract tile assembly model, where thetemperature of a tile system is allowed to be shifted up and down asself-assembly proceeds. We first exhibit two constant-size tile sets in whichscaled-up versions of arbitrary shapes self-assemble. Our first tile set hasthe property that each scaled shape self-assembles via an asymptotically"Kolmogorov-optimum" temperature sequence but the scaling factor grows with thesize of the shape being assembled. In contrast, our second tile set assembleseach scaled shape via a temperature sequence whose length is proportional tothe number of points in the shape but the scaling factor is a constantindependent of the shape being assembled. We then show that there is noconstant-size tile set that can uniquely assemble an arbitrary (non-scaled,connected) shape in the multiple temperature model, i.e., the scaling isnecessary for self-assembly. This answers an open question of Kao and Schweller(Reducing Tile Complexity for Self-Assembly Through Temperature Programming,SODA 2006), who asked whether such a tile set existed.
机译:本文涉及任意有限形状的按比例放大版本的自组装。我们研究了由Aggarwal,Cheng,Goldwasser,Kao和Schweller引入的多重温度模型(自组装的通用模型的复杂性,SODA 2004)。多重温度模型是Winfree抽象瓷砖装配模型的自然概括,其中,随着自装配的进行,允许瓷砖系统的温度上下移动。我们首先展示两个恒定大小的图块集,其中任意形状的按比例放大版本将自动组装。我们的第一个图块集具有以下特性:每个缩放的形状都通过渐近“ Kolmogorov-最适”温度序列自组装,但是缩放因子随所组装形状的大小而增长。相反,我们的第二个图块集通过一个温度序列来组装每个缩放的形状,该温度序列的长度与形状中的点数成比例,但是缩放因子是一个常数,与所组装的形状无关。然后我们表明,没有恒定大小的图块集可以在多温度模型中唯一地组装任意(非缩放,连接)形状,即自组装所必需的缩放比例。这回答了Kao和Schweller提出的一个开放性问题(通过温度编程降低瓷砖的自组装复杂性,SODA 2006),他们问是否存在这样的瓷砖。

著录项

  • 作者

    Summers, Scott M.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号